Abstract

AbstractWhen collaborative robots perform multiple tracking tasks at the same time, the dynamics of each task will interact with each other. In addition, the uncertainty of robot model and external perturbation also limit the performance of the system. In order to tackle above problems, a task priority control framework combining ADRC and null space projection is proposed. First, by using the null-space projection, the new state variables which can realize the decoupling of task space inertia are obtained and the task space dynamics is inertially decoupled correspondingly. Then, by establishing the relationship between the new task state variables and the original task state variables, the task space dynamics represented by the original task state variables is got. Thirdly, based on the task space dynamics of each task, a ADRC controller is constructed to improve the tracking performance and disturbance attenuation property simultaneously. Simulation experiments on the UR5 robot verify the effectiveness of the proposed controller.KeywordsMulti-taskTracking controlNull space projectionInertial decoupling of task space dynamicsADRC

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.