Abstract

Fragment A of diphtheria toxin and Pseudomonas toxin A intoxicate cells by ADP-ribosylating the diphthamide residue of elongation factor-2 (EF-2) resulting in an inhibition of protein synthesis [1–3]. A cellular enzyme from polyoma virus transformed baby hamster kidney (pyBHK) cells ADP-ribosylates EF-2 in an identical manner [4]. Here we describe a similar cellular enzyme from beef liver which transfers [ adenosine- 14C]ADP-ribose from NAD to EF-2. The 14C-label can be removed from the EF-2 by snake venom phosphodiesterase as a soluble product which comigrates with AMP on TLC plates, indicating the 14C-label is present on EF-2 as monomeric units of ADP-ribose. Furthermore, the forward transferase reaction catalyzed by the beef liver ADP-ribosyltransferase is reversible by excess diphtheria toxin fragment A, with the formation of 14C-labeled NAD, indicating that both transferases ADP-ribosylate the same site on the diphthamide residue of EF-2. Thus, beef liver and pyBHK mono(ADP-ribosyl) transferases both modify the diphthamide residue of EF-2, in a manner identical to diphtheria toxin fragment A and Pseudomonas toxin A. These results suggest the cellular enzyme is probably ubiquitous among eukaryotic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.