Abstract

To evaluate the role of lymphocytes in the pathogenesis of allergic bronchoconstriction, we investigated whether allergic airway responses are adoptively transferred by antigen-primed lymphocytes in Brown Norway (BN) rats. Animals were actively sensitized to ovalbumin (OA) or sham sensitized, and 14 d later mononuclear cells (MNCs) were isolated from intrathoracic lymph nodes, passed through a nylon wool column, and transferred to naive syngeneic rats. Recipients were challenged with aerosolized OA or bovine serum albumin (BSA) (5% wt/vol) and analyzed for changes in lung resistance (RL), airway responsiveness to inhaled methacholine (MCh), and bronchoalveolar lavage (BAL) cells. Recipients of MNCs from sensitized rats responded to OA inhalation and exhibited sustained increases in RL throughout the 8-h observation period, but without usual early airway responses. Recipients of sham-sensitized MNCs or BSA-challenged recipients failed to respond to antigen challenge. At 32 h after OA exposure, airway responsiveness to MCh was increased in four of seven rats that had received sensitized MNCs (p = 0.035). BAL eosinophils increased at 32 h in the recipients of both sensitized and sham-sensitized MNCs. However, eosinophil numbers in BAL were inversely correlated with airway responsiveness in the recipients of sensitized MNCs (r = -0.788, p = 0.036). OA-specific immunoglobulin E (IgE) was undetectable by enzyme-linked immunosorbent assay (ELISA) or passive cutaneous anaphylaxis (PCA) in recipient rats following adoptive transfer. In conclusion, allergic late airway responses (LAR) and cholinergic airway hyperresponsiveness, but not antigen-specific IgE and early responses, were adoptively transferred by antigen-primed lymphocytes in BN rats.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call