Abstract
We aim (i) to redesign sepsis's clinical pathway and fit the organizational requirements of a novel machine-learning algorithm incorporating a novel biomarker test and (ii) to assess adoption drivers of the new combined technology. There is an urgent need to achieve sepsis' early detection and diagnostic excellence. A qualitative study based on semi-structured interviews conducted at the target site and across other Italian hospitals. A content analysis was undertaken, emergent themes were selected and categorized, and interviews were conducted until saturation was reached. Sixteen nurses (10 at the target site and six across other hospitals) and nine non-nursing professionals (seven at the target site and two across other hospitals) were interviewed. An organizational redesign was identified as the primary adoption driver. Even though nurses perceived workload increase related to the machine-learning component, technology acceptability was relatively high, as the standardization of tasks was perceived as crucial to improving professional satisfaction. A novel business-oriented solution based on machine learning requires interprofessional integration, new professional roles, infrastructure improvement, and data integration to be effectively implemented. Lessons learned from this study suggest the need to involve nurses in the early stages of the design of new machine-learning technologies and the importance of training nurses on sepsis management through the support of disruptive technological innovation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.