Abstract
The protein structure prediction (PSP) problem, i.e., predicting the three-dimensional structure of a protein from its sequence, remains challenging in computational biology. The inaccuracy of existing protein energy functions and the huge conformation search space make the problem difficult to solve. In this study, the PSP problem is modeled as a multi-objective optimization problem. A physics-based energy function and a knowledge-based energy function are combined to construct the three-objective energy function. An improved multi-objective particle swarm optimization coupled with two archives is employed to execute the conformation space search. In addition, a mechanism based on Pareto non-dominated sorting is designed to properly address the slightly worse solutions. Finally, the experimental results demonstrate the effectiveness of the proposed approach. A new perspective for solving the PSP problem by means of multi-objective optimization is given in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.