Abstract

Human Activity Recognition (HAR) refers to a field that aims to identify human activities by adopting multiple techniques. In this field, different applications, such as smart homes and assistive robots, are introduced to support individuals in their Activities of Daily Living (ADL) by analyzing data collected from various sensors. Apart from wearable sensors, the adoption of camera frames to analyze and classify ADL has emerged as a promising trend for achieving the identification and classification of ADL. To accomplish this, the existing approaches typically rely on object classification with pose estimation using the image frames collected from cameras. Given the existence of inherent correlations between human-object interactions and ADL, further efforts are often needed to leverage these correlations for more effective and well justified decisions. To this end, this work proposes a framework where Graph Neural Networks (GNN) are adopted to explicitly analyze human-object interactions for more effectively recognizing daily activities. By automatically encoding the correlations among various interactions detected through some collected relational data, the framework infers the existence of different activities alongside their corresponding environmental objects. As a case study, we use the Toyota Smart Home dataset to evaluate the proposed framework. Compared with conventional feed-forward neural networks, the results demonstrate significantly superior performance in identifying ADL, allowing for the classification of different daily activities with an accuracy of 0.88. Furthermore, the incorporation of encoded information from relational data enhances object-inference performance compared to the GNN without joint prediction, increasing accuracy from 0.71 to 0.77.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.