Abstract

The increasing demand for drinkable water has speeded the expansion of groundwater use. Unfortunately, many geogenic contaminants like arsenic significantly decrease the quality of groundwater. Arsenic in water has harmed at least 0.3 billion people globally. Researchers used various types of treatment technologies to treat arsenic from synthetic wastewater, such as reverse osmoses, adsorption, and electrocoagulation. The electrocoagulation technique has gained popularity due to its increased removal efficiency compared to traditional treatments, low cost, and low sludge generation. This research aims to analyse arsenic treatment and examine the effect of technique variables on the removal performance to determine the best process variables for water purification. The outcome highlighted that arsenic removal improved with higher current densities needing less operating time. As a result, the removal effectiveness of arsenic from water using the electrocoagulation approach went from 88% to 96% in an alkaline environment, which is preferable. The best working settings for arsenic removal include a current density of 6 mA/m2 and a treating time of 30 minutes to reach 81% arsenic removal effectiveness. The best pH level for treating arsenic-contaminated water has been identified as 9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call