Abstract
Evidence suggests that both genetic and environmental factors contribute to the development of schizophrenia. Rodent models of the disorder have been developed that model either genetic or environment factors to recapitulate various aspects of the disease; however, the examination of gene by environment interactions requires a model of susceptibility. We have previously demonstrated that a proportion of the F2 generation of MAM-treated rats display a schizophrenia-like phenotype, defined as an increase in ventral tegmental area (VTA) dopamine neuron population activity. Here we use this model to examine the consequence of adolescent stress (AS), a known risk factor for psychiatric disease, on dopamine neuron activity in the VTA. Specifically, F2 MAM rats were exposed to predator odor, a stressor of high ethological relevance, intermittently over 10 days throughout the adolescent period and VTA dopamine neuron activity was evaluated in adulthood. Both saline and MAM F2 rats exposed to AS displayed significant increases in population activity; however, the proportion of F2 MAM rats exhibiting this increase was significantly greater (approximately 70%) compared to their respective controls. Given that we have previously demonstrated that the augmented dopamine neuron activity in rodent models of psychosis is directly attributable to aberrant activity in the ventral hippocampus (vHipp), we examined whether AS altered activity within the vHipp. Indeed, there was a positive correlation between dopamine neuron activity and hippocampal firing rates, such that those rats that displayed increases in population activity also had increases in the firing rates of vHipp putative pyramidal neurons. Taken together, these data further demonstrate a role for AS as a risk factor for psychosis, particularly in those with a heritable predisposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in neuro-psychopharmacology & biological psychiatry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.