Abstract

Exposure to adversity during early childhood and adolescence increases an individual's vulnerability to developing substance use disorder. Despite the knowledge of this vulnerability, the mechanisms underlying it are still poorly understood. Excitatory afferents to the nucleus accumbens (NAc) mediate responses to both stressful and rewarding stimuli. Understanding how adolescent social isolation alters these afferents could inform the development of targeted interventions both before and after drug use. Here, we used social isolation rearing as a model of early life adversity which we have previously demonstrated increases vulnerability to cocaine addiction-like behaviour. The current study examined the effect of social isolation rearing on presynaptic glutamatergic transmission in NAc medium spiny neurons in both male and female mice. We show that social isolation rearing alters presynaptic plasticity in the NAc by decreasing the paired-pulse ratio and the size of the readily releasable pool of glutamate. Optogenetically activating the glutamatergic input from the ventral hippocampus to the NAc is sufficient to recapitulate the decreases in paired-pulse ratio and readily releasable pool size seen following electrical stimulation of all NAc afferents. Further, optogenetically inhibiting the ventral hippocampal afferent during electrical stimulation eliminates the effect of early life adversity on the paired-pulse ratio or readily releasable pool size. In summary, we demonstrate that social isolation rearing leads to alterations in glutamate transmission driven by projections from the ventral hippocampus. These data suggest that targeting the circuit from the ventral hippocampus to the nucleus accumbens could provide a means to reverse stress-induced plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.