Abstract

While the etiopathogenesis of adolescent idiopathic scoliosis (AIS) remains unclear, it is assumed that muscular asymmetries contribute to curve progression. As previous studies have found asymmetries of the thoracic paraspinal muscles in AIS patients, our study's aim was to analyze differences in the erector spinae, multifidus, quadratus lumborum, and psoas muscles of the lumbar spine depending on the curve's radiographic characteristics. We retrospectively included all patients who received posterior reposition spondylodesis for AIS treatment at our institution. Patients were classified according to the Lenke classification. Muscle cross-sectional areas were obtained from magnetic resonance imaging of the lumbar spine. Data were analyzed with the Wilcoxon rank sum test, the Kruskal-Wallis test with post hoc testing, or the Spearman's correlation coefficient. Seventy-four (14 males and 60 females) AIS patients with a median age of 16 (IQR ± 4) years and a mean Cobb angle of 56.0° (± 18.0°) were included. In curve types Lenke 1 and 2 (n = 45), the erector spinae (p < 0.001) and multifidus (p < 0.001) muscles had a significantly larger cross-sectional area on the convex side, whereas the quadratus lumborum (p = 0.034) and psoas (p < 0.001) muscles each had a significantly larger cross-sectional area on the lumbar contralateral side. Our results show an asymmetry of the lumbar spine's muscles which depends on both the convexity and the extent of the scoliotic curve. While our results cannot prove whether these differences are the deformity's cause or effect, they may contribute to a better understanding of AIS pathogenesis and may allow for more specific preoperative physiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call