Abstract

Precision prevention is increasingly important in HIV prevention research to move beyond universal interventions to those tailored for high-risk individuals. The current study was designed to develop machine learning algorithms for predicting adolescent HIV risk behaviours. Comprehensive longitudinal data on adolescent risk behaviours, perceptions, peer and family influence, and neighbourhood risk factors were collected from 2564 grade-10 students at baseline followed for 24 months over 2008-2012. Machine learning techniques [support vector machine (SVM) and random forests] were applied to innovatively leverage longitudinal data for robust HIV risk behaviour prediction. In this study, we focused on two adolescent risk behaviours: had ever had sex and had multiple sex partners. Twenty percent of the data were withheld for model testing. The SVM model with cost-sensitive learning achieved the highest sensitivity, at 79.1%, specificity of 75.4% with AUC of 0.86 in predicting multiple sex partners on the training data (10-fold cross-validation), and sensitivity of 79.7%, specificity of 76.5% with AUC of 0.86 on the testing data. The random forest model obtained the best performance in predicting had ever had sex, yielding the sensitivity of 78.5%, specificity of 73.1% with AUC of 0.84 on the training data and sensitivity of 82.7%, specificity of 75.3% with AUC of 0.87 on the testing data. Machine learning methods can be used to build effective prediction model(s) to identify adolescents who are likely to engage in HIV risk behaviours. This study builds a foundation for targeted intervention strategies and informs precision prevention efforts in school-setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.