Abstract

MDMA is one of the most used drugs by adolescents and its consumption has been associated with many psychobiological problems, among them psychomotor problems. Moreover, some authors described that early exposure to MDMA may render the dopaminergic neurons more vulnerable to the effects of future neurotoxic insults. Alzheimer disease (AD) is the main cause of dementia in the elderly and a percentage of the patients have predisposition to suffer nigrostriatal alterations, developing extrapyramidal signs. Nigrostriatal dysfunction in the brain of aged APPswe/PS1dE9 (APP/PS1), a mouse model of familiar AD (FAD), has also been described. The aim of the present study was to investigate the consequences of adolescent exposure to MDMA in APP/PS1 mice, on nigrostriatal function on early adulthood. We used a MDMA schedule simulating weekend binge abuse of this substance. Our MDMA schedule produced a genotype-independent decrease in dopaminergic neurons in the substantia nigra that remained at least 3months. Shortly after the injury, wild-type animals showed a decrease in the locomotor activity and apparent DA depletion in striatum, however in the APP/PS1 mice neither the locomotor activity nor the DA levels were modified, but a reduction in dopamine transporter (DAT) expression and a higher levels of oxidative stress were observed. We found that these disturbances are age-related characteristics that this APP/PS1 mice develops spontaneously much later. Therefore, MDMA administration seems to anticipate the striatal dopaminergic dysfunction in this FAD model. The most important outcome lies in a potentiation, by MDMA, of the amyloid beta deposition in the striatum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call