Abstract
Substance used during adolescent period increases the risk of psychiatric disorders in later life, but the underlying neural mechanisms remain unclear. We hypothesize that synaptic remodeling and changes of homeostasis in the medial prefrontal cortex (mPFC) following adolescent cocaine exposure may last for a long time, and these modifications may contribute to behavioral deficiencies in adulthood. To address this hypothesis, rats were exposed to cocaine hydrochloride from postnatal day 28 (P28) to P42. When reared to adulthood, rats were subjected to behavioral tests. On P75 and P76, cocaine-experienced rats exhibited increased locomotive and anxiety-like behaviors, as well as impaired non-selective attention. In the cocaine-experienced rats, both levels of synapse-related proteins (synapsin I and PSD-95) and density of synapse and dendrite spine in mPFC were significantly decreased when compared to controls. Unexpected, the expression of molecules related to oxidative stress, inflammation and apoptosis showed no significant changes in mPFC following adolescent cocaine exposure. These findings suggested that adolescent exposure to cocaine induce long-term modification on synapses in mPFC, which might contribute to long-term behavioral outcomes in adulthood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.