Abstract
In this paper, we investigate an effective control strategy for a cane-type assistive mobile robot toward clinical gait training. Assistive robots are expected to provide aid in order to reduce the burden of caregivers and physical therapists, e.g., in gait rehabilitation of elderly people. Our group has been developing a series of cane-type walking assistive robots named Intelligent Cane as a mobile hand-holding device based on admittance control to provide safe and efficient gait training. This paper explores a systematic design methodology of the admittance control model in order to provide suitable walking load during gait training. We first conduct a pilot experiment to investigate the relationship between the physiological cost of user’s walking and the coefficients in the admittance control model of the cane robot. Then, we present a clinical gait training study conducted in a hospital to evaluate the feasibility in practical use of the proposed control strategy of our cane robot in gait rehabilitation. These experimental results suggest the effectiveness of the proposed gait rehabilitation strategy with our robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.