Abstract

A distributed algorithm, where only one user for each cell is involved in the adjustment of weight and power, is proposed for joint diversity and power control in wireless networks. We prove that the power and weight of this algorithm converge to the optimal power and weight that minimize the total power consumption. In addition, we also prove some properties that facilitate the operation of the admission control in which the distributed algorithm is incorporated. Two approaches are proposed for the admission control: 1) the admission criterion and 2) the admission control algorithm. The proposed admission criteria are realized by considering a set of inequalities, whereas the proposed admission control algorithm is based on the connection removal. It is shown that the number of inequalities for the proposed admission criteria can be reduced from the number of users to the number of base stations so that the computational complexity of the proposed admission criteria can largely be reduced. In addition, we have found in the simulation results that the proposed admission control algorithm outperforms other admission control algorithms in terms of the average execution time and computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.