Abstract

Admissible consensus analysis and consensualizing controller design problems for high-order linear time-invariant singular swarm systems are investigated. Firstly, by projecting the state of a singular swarm system onto a consensus subspace and a complement consensus subspace, a necessary and sufficient condition for admissible consensus is presented in terms of linear matrix inequalities (LMIs). An approach to decrease the calculation complexity is proposed, by which only three LMIs independent of the number of agents need to be checked. Then, by using the changing variable method, sufficient conditions for admissible consensualization are shown. An explicit expression of the consensus function is given, and it is shown that the modes of the consensus function can be arbitrarily placed if each agent is R-controllable and impulse controllable and the interaction topology has a spanning tree. Finally, theoretical results are applied to deal with cooperative control problems of multi-agent supporting systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.