Abstract

Cocaine administration in rats increases locomotor activity as a result of underlying changes in neurotransmitter dynamics and intracellular signaling. The serine/ threonine phosphatase, calcineurin, is known to modulate several signaling proteins that can influence behavioral responses to cocaine. This study aimed to determine whether calcineurin plays a role in locomotor responses associated with acute and repeated cocaine exposure. Second, we examined cocaine-mediated changes in intracellular signaling to identify potential mechanism underlying the ability of calcineurin to influence cocaine-mediated behavior. Locomotor activity was assessed over 17 days in male Sprague-Dawley rats (n = 48) that received daily administration of cocaine (15 mg/kg, s.c.) or saline in the presence or absence of the calcineurin inhibitor, cyclosporine (15 mg/kg, i.p.). Non-cocaine-treated animals from this initial experiment (n = 24) also received an acute cocaine challenge on day 18 of testing. Daily cyclosporine administration potentiated the locomotor response to repeated cocaine 5 min after cocaine injection and attenuated the sustained locomotor response 15 to 40 min after cocaine. Furthermore, cyclosporine pretreatment for 17 days augmented the acute locomotor response to acute cocaine 5 to 30 min after cocaine injection. Finally, repeated exposure to either cocaine or cyclosporine for 22 days increased synapsin I phosphorylation at the calcineurin-sensitive Ser 62/67 site, demonstrating a common downstream target for both calcineurin and cocaine. Our results suggest that calcineurin inhibition augments locomotor responses to cocaine and mimics cocaine-mediated phosphorylation of synapsin I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.