Abstract
The imbalance in oxidant/antioxidant status plays a pivotal role in diabetes mellitus (DM). Selenium is a integral component of the antioxidant enzyme glutathione peroxidase. Se treatment induces angiogenesis and improves endothelial function through increased expression of vascular endothelial growth factor (VEGF). The aim of this study is to investigate the effect of selenium on oxidative stress, VEGF, and endothelin 1 (ET1) in a DM rat model. We performed an experimental animal study with 64 adult male Wistar-Albino rats. Rats were divided into the following groups (n=8): control (C)7, C21, C+sodium selenite (Se)7, and C+Se21 (control rats), and DM7, DM21, DM+Se7, and DM+Se21 (diabetic rats). Diabetes was induced by 2-deoxy-2-(3-methyl-3-nitrosoureido)- D-glucopyranose [streptozotocin (STZ)]. Three weeks after STZ, DM+Se7 rats received intraperitoneal (i.p.) injections of 0.4 mg/kg Se for 7 days. The DM+Se21 rats received these injections for 21 days. The same dose/duration of Se was administered to the C+Se7 and C+Se21 groups. The remaining rats (C7, C21, DM7, DM21) received physiologic saline injections for 7 or 21 days. Ferric reducing antioxidant power (FRAP), malondialdehyde (MDA), advanced oxidation protein products (AOPP), and endothelial function markers (VEGF and ET1) in plasma samples were measured. Diabetic rats (DM7 and DM21) had significantly increased plasma FRAP (P=0.002, P=0.001), AOPP (P=0.024, P=0.01), MDA (P=0.004, P=0.001), and ET1 (P=0.028, P=0.003) levels compared with C7 and C21 control rats. VEGF (P=0.02, P=0.01) significantly decreased in DM7 and DM21 diabetic rats compared with their controls (C7, C21). Se administration reversed the increased MDA and decreased VEGF levels, and lowered plasma glucose levels in the DM+Se7 and DM+Se21 diabetic groups compared with diabetic rats (DM7, DM21). We observed positive correlations between FRAP-AOPP (r=0.460), FRAP-ET1 (r=0.510), AOPP-MDA (r=0.270), and AOPP-ET1 (r=0.407), and a negative correlation between MDA-VEGF (r=-0.314). We observed accentuated oxidative stress and impaired endothelial function in diabetes. Se treatment reduced lipid peroxidation and hyperglycemia. Se probably improved endothelial dysfunction in diabetic rats because of the increased VEGF levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.