Abstract

The administration of recombinant human interleukin-7 (rhIL-7) to mice twice a day for 7 days does not appreciably change bone marrow (BM) cellularity, but does result in a threefold to fivefold increase in the total number of leukocytes in the spleen, an eightfold to 10-fold increase in the total number of nonparenchymal cells (NPC) obtained from the liver, and up to a 20-fold increase in the total number of peripheral white blood cells (WBC). This regimen of rhIL-7 administration also causes a profound reduction in the total number of progenitors in the BM for both single-lineage colony-forming units- culture (CFU-c) (> 90%) and multilineage CFU-granulocyte, erythroid, monocyte, megakaryocyte (CFU-GEMM) (> 99%) colonies. In contrast, mice treated with rhIL-7 exhibited increases in both CFU-c (20- to 40-fold, 20-fold, and 15- to 40-fold) and CFU-GEMM (8- to 10-fold, 30-fold, and 6- to 10-fold) cultured from the peripheral blood, spleen, and NPC, respectively. The increase in CFU in the NPC was accompanied by a fivefold increase in the number of MAC-1+ cells and a ninefold increase in the number of 8C5bright+ cells. Splenectomy of mice before the administration of rhIL-7 further increased the total number of WBC, NPC, and myeloid progenitors as compared with the rhIL-7-treated nonsplenectomized mice. Finally, selective depletion of the BM by intraperitoneal administration of 89Sr (98% reduction in BM cellularity and > 99% reduction in BM myeloid progenitors) abrogated the rhIL-7- induced increases in cellularity and myeloid progenitor number in the peripheral blood, spleen, and NPC. These results show that the changes in myelopoiesis observed after in vivo administration of rhIL-7 to mice result largely from the emigration of myeloid progenitors from the BM through the blood to the spleen, liver, and, possibly, other peripheral organs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call