Abstract
The two membrane-bound proteins, focal adhesion kinase (FAK) and CD44, are involved in processes critical to cancer progression. FAK has an active role in angiogenesis, cell proliferation and cell apoptosis, whereas the heavily glycosylated CD44 has been implicated in cancer metastasis. Here, using short hairpin RNA (shRNA) against FAK and CD44, we demonstrate that simultaneous knockdown of both these genes inhibits cancer growth more efficiently than knockdown of either gene individually. Plasmids targeting these genes or non-relative control sequences were constructed and delivered to ovarian cancer targets by biodegradable poly D,L-lactide-co-glycolide acid nanoparticles (PLGANPs). Nude mice were utilized in an intraperitoneal model of ovarian carcinomatosis to assess antitumor efficacy in vivo. Single gene knockdown resulted in significantly smaller tumors than those observed in the empty-vector control (P's<0.001). More importantly, knockdown of both genes resulted in tumors smaller than both the empty-vector group (P<0.0001) and the single gene knockdown groups (P's<0.001). Knockdown of both FAK and CD44 resulted in tumors with inhibited angiogenesis, reduced proliferation and increased apoptosis as compared with controls (P's<0.001) and single knockdown groups (P's<0.05). These results indicate that dual knockdown of FAK and CD44 in the tumors of patients with ovarian cancer may have an enhanced therapeutic effect, and point toward a mechanism involving the inhibition of angiogenesis, cellular proliferation and the induction of apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.