Abstract

Studies on the effect of phosphatidylcholine administration on memory are limited. We administered egg phosphatidylcholine to mice with dementia and to normal mice and compared the differences in memory and serum choline concentration, and choline and acetylcholine concentrations and choline acetyltransferase activities of three forebrain regions (cortex, hippocampus and the remaining forebrain). Mice with dementia were produced by mating sibling mice who had impaired memory for >20 generations. These mice had poor memory and low brain acetylcholine concentration. We administered 100 mg of egg phosphatidylcholine (phosphatidylcholine group) or water (control group) by gavage to each mouse daily for about 45 d. Control mice with dementia had poorer memory in passive avoidance performance and lower brain choline (cortex and hippocampus) and acetylcholine (hippocampus and forebrain excluding cortex and hippocampus) concentrations and lower cortex choline acetyltransferase activity than the control normal mice (P < 0.05). The administration of phosphatidylcholine to mice with dementia improved memory and generally increased brain choline and acetylcholine concentrations to or above the levels of the control normal mice. In normal mice, phosphatidylcholine treatment did not affect memory or acetylcholine concentrations in spite of the great increase in choline concentrations in the three brain regions. Serum choline concentration in mice treated with phosphatidylcholine increased to a similar level in both strains of mice, indicating that the absorption of phosphatidylcholine was not impaired in mice with dementia. The results suggest that administration of egg phosphatidylcholine to mice with dementia increases brain acetylcholine concentration and improves memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call