Abstract

Hepatocytes derived either from rats fed a diet enriched in n-3 fatty acids or from rats fed a low-fat diet and cultured with an n-3 fatty acid (eicosapentaenoic acid, EPA) in vitro were used to distinguish between the dietary effects and the direct effects of n-3 fatty acids on hepatocellular apolipoprotein (apo) B metabolism and secretion. ApoB-48 and apoB-100 synthesis, degradation, and secretion as large (d<1.006) and small (d>1.006) particles were determined after a pulse label with [35S]methionine. These effects were compared with changes in triacylglycerol (TAG) synthesis and secretion and with changes in de novo fatty acid synthesis (using 3H2O incorporation) under identical conditions. When n-3 fatty acid was given via the dietary route, apoB-48 very low density lipoprotein (VLDL) secretion was inhibited, but there was no effect on the secretion of apoB-100 VLDL. There was no effect on the secretion of either apoB-48 or apoB-100 as small, dense particles (d>1.006). Cellular TAG synthesis was significantly inhibited under these conditions, and fatty acid synthesis de novo was inhibited by 80%. By contrast, after direct addition of EPA to hepatocytes from normal rats, the secretion of both apoB-48 and apoB-100 VLDL was suppressed. The secretion of apoB-48, but not of apoB-100, as dense particles was also inhibited. However, there was little or no effect on TAG synthesis nor on fatty acid synthesis de novo. In addition, whereas dietary administration of n-3 fatty acid gave rise to decreased net synthesis and degradation of apoB-48, direct administration in vitro resulted in increased degradation with no effect on net synthesis. We conclude that the effects of n-3 fatty acids on hepatic lipid and apoB metabolism differ according to whether they are administered in vivo, via the dietary route, or in vitro, via direct addition to hepatocyte cultures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.