Abstract
L-citrulline and L-arginine supplementation has been shown to have several beneficial effects on the cardiovascular system. Nitric oxide (NO) protects against the progression of atherosclerosis and is synthesized by nitric oxide synthase (NOS), which converts L-arginine (L-Arg) into L-citrulline (L-Cit). Our previous study revealed that chronic administration of a combination of L-Cit and L- Arg has a better therapeutic effect on high cholesterol-induced atherosclerosis in rabbits. We investigated how L-Arg and L-Cit affect endothelial function, aging and atherosclerosis. Following a 3-day stimulation of human umbilical venous endothelial cells (HUVECs) with high glucose (HG: 22 mM) and L-Arg (300 μM), L-Cit (300 μM) or L-Arg plus L-Cit (LALC: each 150 μM) supplementation, endothelial senescence and function were evaluated. These amino acids were also administered to dyslipidemic type 2 diabetic (ZDFM) rats fed a high cholesterol diet. They were fed L-Arg or L-Cit or LALC for four weeks. Aortic senescence was investigated by measuring senescence-associated ß-galactosidase (SA-ß-gal), telomerase activity, DNA damage and p16INK4a protein expression. Only L-Cit and LALC supplementation retarded the HG-induced endothelial senescence, as evaluated by SA-ß-gal activity, a widely used marker of cellular senescence, p16INK4a expression, a senescence-related protein, and DNA damage. Under HG conditions, L-Cit and LCLA restored telomerase activity to levels observed under normal glucose (NG) conditions. Under HG conditions, L-Cit decreased ROS production, as measured by CM-H2DCFDA and the expression of p67phox, a major component of NADPH oxidase. Under HG conditions, L-Cit and LALC increased NO production, as measured by DAF-2AM. Endothelial NO synthase (eNOS) and phosphorylated eNOS were decreased under HG conditions and L-Cit and LALC significantly increased these levels. Arginase 2 protein expression increased under the HG conditions, and L-Cit and LALC significantly attenuated this effect. In ZDFM rats, SA-ß-gal activity was detected on the aortic endothelial surface; however, L-Cit and LALC reduced these levels. L-Cit and LALC both decreased the proportion of senescent cells. Furthermore, treatment with LALC for 4 weeks increased plasma NO production. Therefore conclusively, L-citrulline supplementation rescued NO levels better than L-arginine supplementation by inhibiting ROS production and arginase 2 protein expression. Consequently, L-Cit and LCLA supplementation retaeded HG-induced endothelial senescence.
Highlights
Aging is an important risk factor for cardiovascular diseases [1]
These results suggest that the high glucose (HG) condition induced endothelial senescence and that L-Cit and L-Arg plus L-Cit (LALC) reversed this senescence as detected by the decrease in molecular senescence markers, such as DNA damage and the p16INK4a protein level
We evaluated the effects of L-Arg and L-Cit on endothelial function, aging and atherosclerosis
Summary
Aging is an important risk factor for cardiovascular diseases [1]. Cellular senescence limits the ability of cultured human cells to divide in vitro and is accompanied by phenotypic changes in gene expression, morphology, and function [2]. In aged animals, increased levels of proinflammatory molecules are expressed in senescent cells, suggesting that cellular senescence plays a role in the pathogenesis of atherosclerosis in vivo [3]. We previously observed and reported that endothelial senescence is important in the progression of atherosclerosis [4,5,6]. The shortening of telomeres, repetitious DNA sequences at the ends of eukaryotic chromosomes, is observed at the cellular level in various phases of the aging process. The free radical theory suggests that oxidative stress promotes senescence by causing telomere shortening through inactivation of the Src kinase family members [9]. Nitric oxide (NO) is a well-known signaling molecule that protects against the progression of atherosclerosis [10]. NO is synthesized by nitric oxide synthase (NOS), which converts L-arginine (L-Arg) into L-citrulline (L-Cit). The role of NO metabolism in senescence, especially in terms L-Arg and L-Cit is unknown
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.