Abstract

Preliminary studies have shown that systemic beta-human chorionic gonadotrophin (betaHCG) therapy alleviates endometriosis-related chronic pelvic pain. The underlying mechanism, however, is completely unknown. This study has investigated the dose-dependent alterations in the overall gene expression profile of endometriosis-derived stromal cells under increasing concentrations of betaHCG by using the Affymetrix GeneChip U133 Set. It has been previously shown that betaHCG concentrations of 0.1U/ml and higher lead to a significant and dose-dependent increase in the expression of 68 genes. This study reports on a cluster analysis which identified three clusters of genes with a comparable expression pattern in response to increasing concentrations of betaHCG. Most of the up-regulated genes encoded proteins that are involved in cell adhesion, intercellular communication, extracellular matrix remodelling, apoptosis and inflammation. Stromal monocultures from eight patients, treated with and without 50U/ml of betaHCG, were then incubated and real-time polymerase chain reaction for the highly up-regulated genes PAI2, DUSP6, PLAU and MMP1 performed in order to validate the cDNA array findings in patients with endometriosis. Taken together, this study shows that betaHCG induces dose-dependent characteristic response clusters in the gene expression profile of stromal cells obtained from endometriotic lesions which could explain the differential biological responses of betaHCG in endometriosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call