Abstract

Our previous ecological studies of autism spectrum disorder (ASD) has demonstrated a correlation between increasing ASD rates and aluminium (Al) adjuvants in common use in paediatric vaccines in several Western countries. The correlation between ASD rate and Al adjuvant amounts appears to be dose-dependent and satisfies 8 of 9 Hill criteria for causality. We have now sought to provide an animal model to explore potential behavioural phenotypes and central nervous system (CNS) alterations using s.c. injections of Al hydroxide in early postnatal CD-1 mice of both sexes. Injections of a “high” and “low” Al adjuvant levels were designed to correlate to either the U.S. or Scandinavian paediatric vaccine schedules vs. control saline-injected mice. Both male and female mice in the “high Al” group showed significant weight gains following treatment up to sacrifice at 6months of age. Male mice in the “high Al” group showed significant changes in light–dark box tests and in various measures of behaviour in an open field. Female mice showed significant changes in the light–dark box at both doses, but no significant changes in open field behaviours. These current data implicate Al injected in early postnatal life in some CNS alterations that may be relevant for a better understanding of the aetiology of ASD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.