Abstract

To elucidate the therapeutic efficacy of alpha-radioimmunotherapy of ovarian cancer in mice. This study: (i) estimated the minimum required activity (MRA), giving a reasonable high therapeutic efficacy; and (ii) calculated the specific energy to tumor cell nuclei and the metastatic cure probability (MCP) using various assumptions regarding monoclonal-antibody (mAb) distribution in measured tumors. The study was performed using the alpha-particle emitter Astatine-211 (211At) labeled to the mAb MX35 F(ab')2. Animals were inoculated intraperitoneally with approximately 1 x 10(7) cells of the cell line NIH:OVCAR-3. Four weeks later animals were treated with 25, 50, 100, or 200 kBq 211At-MX35 F(ab')2 (n = 74). Another group of animals was treated with a nonspecific mAb: 100 kBq 211At-Rituximab F(ab')2 (n = 18). Eight weeks after treatment the animals were sacrificed and presence of macro- and microscopic tumors and ascites was determined. An MCP model was developed and compared with the experimentally determined tumor-free fraction (TFF). When treatment was given 4 weeks after cell inoculation, the TFFs were 25%, 22%, 50%, and 61% after treatment with 25, 50, 100, or 200 kBq (211)At-MX35 F(ab')2, respectively, the specific energy to irradiated cell nuclei varying between approximately 2 and approximately 400 Gy. As a significant increase in the therapeutic efficacy was observed between the activity levels of 50 and 100 kBq (TFF increase from 22% to 50%), the conclusion was that the MRA is approximately 100 kBq (211)At-MX35 F(ab')2. MCP was most consistent with the TFF when assuming a diffusion depth of 30 mum of the mAbs in the tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call