Abstract

Functional nucleic acids, such as aptamers and allosteric ribozymes, can sense their ligands specifically, thereby undergoing structural alterations that can be converted into a detectable signal. The direct coupling of molecular recognition to signal generation enables the production of versatile reporters that can be applied as molecular probes for various purposes, including high-throughput screening. Here we describe an unprecedented type of a nucleic acid-based sensor system and show that it is amenable to high-throughput screening (HTS) applications. The approach detects the displacement of an aptamer from its bound protein partner by means of luminescent oxygen channeling. In a proof-of-principle study we demonstrate that the format is feasible for efficient identification of small drug-like molecules that bind to a protein target, in this case to the Sec7 domain of cytohesin. We extended the approach to a new cytohesin-specific single chain DNA aptamer, C10.41, which exhibits a similar binding behavior to cytohesins but has the advantage of being more stable and easier to synthesize and to modify than the RNA-aptamer M69. The results obtained with both aptamers indicate the general suitability of the aptamer-displacement assay based on luminescent oxygen channelling (ADLOC) for HTS. We also analyzed the potential for false positive hits and identified from a library of 18,000 drug-like small molecules two compounds as strong singlet-oxygen quenchers. With full automation and the use of commercially available plate readers, we estimate that the ADLOC-based assay described here could be used to screen at least 100,000 compounds per day.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call