Abstract
The cationic lipohexapeptide Pam 3Cys–Ser–(Lys) 4 is a synthetic model for the triacylated N-terminal part of bacterial lipoproteins, and it is used as an adjuvant and macrophage activator. The amphiphilic lipopeptide was injected below a phosphatidylserine monolayer at the air–water interface. It interacted with the interface, as seen by a decrease in the surface potential (Δ V), and it was inserted in the monolayer, until surface charge neutralization was reached, as seen by the parallel increases of Δ V and of the surface pressure. No insertion occurred above 29 mN/m. The interaction kinetics was sensitive to ionic strength and to the nature of acidic phospholipids and of their acyl chains, but the final equilibrium was independent of these factors. Addition of the lipopeptide to large unilamellar vesicles (LUVs) induced their aggregation, and an exchange of lipids between fluorophor-labelled and non-labelled LUVs. However, no fusion was observed, just as reported for polylysine. The lipopeptide strongly inhibited calcium-induced fusion of PS LUVs, in contrast to the published effect of polylysine. This was probably due to inhibition of calcium fixation on liposomes, since it was observed that the lipopeptide efficiently displaced 45 Ca 2+ from a PS monolayer. In addition, a phospholipid segregation was observed in SUVs for a few ten micromolar of the lipopeptide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.