Abstract

An irrigation scheduling model represented by 12.7 DAT * 0.5 * ASW = D(DAT – 1) + [Ep(DAT) * CF(DAT) – R – I] was tested in central Alabama for Spring-grown bell pepper (Capsicum annuum L.). In the model, DAT (days after transplanting) is crop age; effective root depth is 12.7 DAT with a maximum of 250 mm; usable water (mm3·mm–3) is 0.5 ASW; deficit on the previous day is D(DAT–1); evapotranspiration is pan evaporation [Ep(DAT)] times a crop factor value [CF(DAT) = 0.15 + 0.018 DAT – 0.0001 DAT * DAT]; rainfall (R) and irrigation (I) are in mm. The model called for 13 irrigations between 17 and 85 DAT. Under the current N recommendation rate for bell pepper (112 kg/ha), marketable yield increased quadratically from 36% to 148% of the model rate. Highest marketable yields occurred near the model rate. Under a N rate of 170 kg/ha, yields increased linearly. These results suggests that the model provided adequate moisture to maximize bell pepper marketable yields under the recommended N rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.