Abstract

The present work focuses on the modeling of the quantum confinement for several cubic semiconductors of the IV, IV-IV, III-IV, II-VI groups. In this way, we improve the actual methods of the band gap energy adjustment as function of the nanosemiconductors sizes. First, we used the Effective Mass Approximation (EMA) to investigate several confinement regimes such as weak, medium and strong. Then to ensure a good adjustment of this band gap energy, we recalculated the holes and the electrons effective masses of the cubic semiconductors via the K-P theory, the Luttinger parameters, and various interpolations. The results are compared with two other methods: a theoretical model of the Hyperbolic Band (HBM) and experimental method of the absorption spectra and photoluminescence. We found a better adjustment of the band gap energy according to nanosemiconductors size. These results may enhance considerably the efficiency of solar cells based on quantum dots by optimizing the nano-semiconductors size for each junction and converting the maximum of the solar spectrum. Indeed, we have found that the optimal quantum dot radii of all silicon tandem solar cells are 1.1nm for the upper junction and 1.5nm for the middle junction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.