Abstract

ABSTRACT This study investigated the influence of impact height and competitive level on racket speed and stroke accuracy by analysing segmental angular kinematics under a random ball condition. High- (HQ, n = 7) and low-quality (LQ, n = 7) groups were determined by k-means clustering of the ratio of ball landing in the target (accuracy) and racket speed decrease. HQ showed higher accuracy (48.3% vs. 32.4%), less speed decrease at lower impact heights (−4.4% vs. −10.3%) and better competitive level ranking [median (1st–3rd quartiles); 4 (2–7)] than LQ [10 (8–13)]. HQ produced greater racket speed (24.4 vs. 21.6 m/s), especially with a notable horizontal velocity (23.8 vs. 20.8 m/s) of the racket at lower impact height, which was attributed to the central role of greater angular velocity of pelvis and thorax in the hitting direction. Both groups showed similar adjustment mechanisms that due to the decrease in angular velocity of pelvis, players increased the relative rotation angle between pelvis and thorax to maintain angular velocity of thorax when transitioning from low to high impact heights. Our findings suggest that players should emphasise the coordination between pelvic and thoracic rotations according to impact heights to maintain racket speed while controlling ball landing position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.