Abstract

In the model-based approach, researchers assume that the underlying structure, which generates the population of interest, is correctly specified. However, when the working model differs from the underlying true population model, the estimation process becomes quite unreliable due to misspecification bias. Selecting a sample by applying the balancing conditions on some functions of the covariates can reduce such bias. This study aims at suggesting an estimator of population total by applying the balancing conditions on the basis functions of the auxiliary character(s) for the situations where the working model is different from the underlying true model under a ranked set sampling without replacement scheme. Special cases of the misspecified basis function model, i.e. homogeneous, linear, and proportional, are considered and balancing conditions are introduced in each case. Both simulation and bootstrapped studies show that the total estimators under proposed sampling mechanism keep up the superiority over simple random sampling in terms of efficiency and maintaining robustness against model failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.