Abstract
An oilfield was an oil reservoir with strong bottom water in offshore, the water cut was as high as 96%. In the high water cut stage, the most effective way of increasing oil production was to extract liquid and increase oil. The processing capacity of oilfield fluid was limited by the conditions. By using Petrel-RE-2017 software, combining reservoir engineering and percolation mechanics methods, this paper analyzes the effect of large-scale liquid pumping, expands coverage and shut-in coning in oil reservoirs with bottom water, and formulates the adjustment strategy of single well production structure of the whole oilfield. It was confirmed that large-scale liquid production can expand coverage and shutting down well can reduce water cut. It can provide reference and guidance for oil field with strong bottom water when it encounters bottleneck of liquid treatment capacity.
Highlights
IntroductionFor oilfields with super high water cut and limited fluid, there was little research on what measures should be taken to increase oil production
Oil wells had been abandoned in the case of high water cut
By using Petrel-RE-2017 software, combining reservoir engineering and percolation mechanics methods, this paper analyzes the effect of large-scale liquid pumping, expands coverage and shut-in coning in oil reservoirs with bottom water, and formulates the adjustment strategy of single well production structure of the whole oilfield
Summary
For oilfields with super high water cut and limited fluid, there was little research on what measures should be taken to increase oil production. Through reservoir engineering and seepage mechanics combined with field technology and reasonable production system research, a reasonable allocation strategy was obtained for single well fluid production in offshore strong bottom water reservoirs. Through field experiments, it could achieve the effect of increasing oil
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.