Abstract

Abstract During manufacturing of metallic components, thermo-mechanical loadings induce surface layer states like topography or residual stresses, which influence the component properties like fatigue strength. In order to optimize the component properties, a mechanical surface treatment can be carried out after the machining process. In this work, the influence of the process parameters processing velocity and penetration depth on the resulting tool wear during external longitudinal turning of AISI 4140q&t by Complementary Machining is analyzed. The process strategy Complementary Machining (CM) combines machining and mechanical surface treatment using the cutting tool. The mechanical surface treatment takes place after the machining in the opposite machining direction. The results of this study show that the process variables have an influence on the tool wear and thus directly influence the resulting topography. The fatigue analysis shows that the fatigue strength after Complementary Machining is comparable to that of shot peening. Furthermore, the concept of local fatigue strength is used to show the extent that residual stress reduction as a result of cyclic loading affects the fatigue strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.