Abstract

Herein, binary composite catalysts based on MnO2 and CoFe2O4 were prepared to degrade bisphenol A (BPA) and dimethyl phthalate (DMP) by coupling with peroxymonosulfate (PMS), in which CoFe2O4 was located either at the outer (MnO2@CoFe2O4) or at the inner (CoFe2O4@MnO2) positioning. The catalysts possessed higher degradation efficiency than both pristine CoFe2O4 and MnO2, in which MnO2@CoFe2O4 provided the highest PMS activation capability. The positioning of each component influenced significantly the variety and intensity of the generated reactive oxidative species, in which MnO2@CoFe2O4 generated more hydroxyl radical (OH) whereas CoFe2O4@MnO2 generated more non-radical singlet oxygen (1O2). Therefore, MnO2@CoFe2O4 could degrade both BPA and DMP with high degradation rate, while CoFe2O4@MnO2 only exhibited promising degradation efficiency towards BPA since DMP was inert to 1O2. Comparatively, CoFe2O4@MnO2 had better catalytic stability and water matrix adaptability than MnO2@CoFe2O4 when degrading BPA, since OH was vulnerable water with complicated compositions. This study provides a new insight for the design and selection of composite catalyst towards the degradation of organic pollutants with discrepant structures and properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call