Abstract

Models of measles transmission can be used to identify areas of high risk to tailor immunization strategies. Estimates of spatial connectivity can be derived from data such as mobile phone records, however it is not clear how this maps to the movement of children who are more likely to be infected. Using travel surveys across two districts in Zambia and national mobile phone data, we compared estimates of out-of-district travel for the population captured in the mobile phone data and child-specific travel from travel surveys. We then evaluated the impact of unadjusted and adjusted connectivity measures on simulated measles virus introduction events across Zambia. The number of trips made by children from the travel survey was three to five times lower than the general population estimates from mobile phone data. This decreased the percentage of districts with measles virus introduction events from 78% when using unadjusted data to 51% - 64% following adjustment. Failure to account for age-specific heterogeneities in travel estimated from mobile phone data resulted in overestimating subnational areas at high risk of introduction events, which could divert mitigation efforts to districts that are at lower risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.