Abstract
To investigate the effect mechanism of electroacupuncture based on the AMP-activated protein kinase (AMPK) /acetyl-CoA carboxylase (ACC) signaling pathway to improve glycolipid metabolism disorders in db/db mice. 10 db/m mice with normal genotype were used as the normal control group without diabetes (Con), and 30 db/db mice were divided randomly into three groups: Pathological model mice (Mod), Acupuncture + ACC antagonist group (Acu + ACC), and Acupuncture + AMPK antagonist group (Acu + AMPK). Con and Mod did not receive any special treatment, only as a control observation. The latter two groups of mice received electroacupuncture treatment for 4 weeks. Mouse triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol(LDL-C), and cholesterin(CHO) levels were detected by colorimetric assay. Enzyme-linked immunoassay (ELISA) was used to detect insulin(INS) levels. Liver histopathologic changes and hepatic glycogen synthesis were observed by HE and PAS staining. The mRNA and protein expression of insulin receptor substrate-1(IRS1), Phosphatidylinositol 3-kinase(PI3K), protein kinase B (AKT), AMPK, and ACC were detected by Western blot and qRT-PCR.The results show that compared with Mod, TG, LDL, CHO, and INS levels of Acu + AMPK and Acu + ACC mice were significantly reduced (P < 0.05), and the HDL levels were significantly increased (P < 0.05), the steatotic degeneration of mice hepatocytes was reduced to different degrees, and the hepatocyte glycogen particles were increased, and the latter two groups had a decrease in AKT, ACC mRNA expression was reduced (P < 0.05), PI3K protein expression was increased, and AKT and ACC protein expression was reduced (P < 0.05), in addition, protein expression of AMPK was increased and IRS1 protein expression was reduced in Acu + ACC (P < 0.05). The study showed that electroacupuncture improves glucose-lipid metabolism disorders in db/db mice, and this mechanism is related to the AMPK/ACC signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.