Abstract

Color dispersion, i.e., the dependency of refractive index of any transparent material on the wavelength of light, has important consequences for the function of optical instruments and animal eyes. Using a multi-objective goal attainment optimization algorithm, a dispersion model was successfully fitted to measured refractive indices of various ocular media and the longitudinal chromatic aberration determined by laser-scanning in the crystalline lens of the African cichlid fish, Astatotilapia burtoni. The model describes the effects of color dispersion in fish lenses and may be applicable to the eyes of other vertebrates as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.