Abstract

The oxygen reduction reaction (ORR) via the two-electron pathway is an important method of hydrogen peroxide (H2O2) production. This study demonstrates that MnO with different oxygen vacancies possesses great 2e- ORR activity. The H2O2 selectivity increased from 10% to 93% with increasing oxygen vacancy concentration by adjusting the reaction temperature and time. Moreover, the H2O2 yield of the optimal MnO reached 544.1 mmol g-1 h-1, and it showed extraordinary stability over a long period of time (10 000 circles CV), surpassing most of the reported transition metal catalysts. This provides a new strategy for efficient and low-cost electrochemical production of H2O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.