Abstract

Abstract Interval digraphs were introduced by West et al. They can be recognized in polynomial time and admit a characterization in terms of incidence matrices. Nevertheless, they do not have a forbidden structure characterization nor a low-degree polynomial recognition algorithm. We introduce a new class of ‘adjusted interval digraphs,’ obtained by a slight change in the definition. We show that, by contrast, these digraphs have a natural forbidden structure characterization, parallel to a characterization for undirected graphs, and admit a simple recognition algorithm. We relate adjusted interval digraphs to a list homomorphism problem. Each digraph H defines a corresponding list homomorphism problem L-HOM(H). We observe that if H is an adjusted interval digraph, then the problem L-HOM(H) is polynomial time solvable, and conjecture that for all other reflexive digraphs H the problem L-HOM(H) is NP-complete. We present some preliminary evidence for the conjecture, including a proof for the special case of semi-complete digraphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call