Abstract

AbstractWith the rapid development of integrated circuits towards miniaturization and complexity, there is an urgent need for materials with low dielectric constant/loss and high processing temperatures to effectively prevent signal delay and crosstalk. With high porosity, thermal stability, and easy structural modulation, covalent organic frameworks have great potential in the field of low dielectric materials. However, the optimization of dielectric properties by modulating the conjugated/plane curvature structure of covalent organic frameworks (COFs) has rarely been reported. Accordingly, we herein innovatively prepare COF films with adjustable planar curvature, hence possessing ultralow dielectric constant (1.9 at 1 kHz), ultralow dielectric loss at 1 kHz (0.0029 at room temperature, 0.0052 at 200 °C), high thermal decomposition temperature (5 % weight loss temperature, 473 °C) and good hydrophobicity (water contact angle, 105.3°). Also, to the best of our knowledge, we are the first to report that the resulting COF film enables high surface potential (≈320 V) for one week, attributing to its intrinsic high porosity, thus presenting great potential in electret applications. Accordingly, this innovative work provides a readily available and scalable idea to prepare materials with comprehensively excellent dielectric and electret properties as well as high processing temperatures simultaneously for advanced electronic device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.