Abstract

Until the 1990s, the passive and active length-tension (L-T) relationships of smooth muscle were believed to be static, with a single passive force value and a single maximum active force value for each muscle length. However, recent studies have demonstrated that the active L-T relationship in airway smooth muscle is dynamic and adapts to length changes over a period of time. Furthermore, our prior work showed that the passive L-T relationship in rabbit detrusor smooth muscle (DSM) is also dynamic and that in addition to viscoelastic behavior, DSM displays strain-softening behavior characterized by a loss of passive stiffness at shorter lengths following a stretch to a new longer length. This loss of passive stiffness appears to be irreversible when the muscle is not producing active force and during submaximal activation but is reversible on full muscle activation, which indicates that the stiffness component of passive force lost to strain softening is adjustable in DSM. The present study demonstrates that the passive L-T curve for DSM is not static and can shift along the length axis as a function of strain history and activation history. This study also demonstrates that adjustable passive stiffness (APS) can modulate total force (35% increase) for a given muscle length, while active force remains relatively unchanged (4% increase). This finding suggests that the structures responsible for APS act in parallel with the contractile apparatus, and the results are used to further justify the configuration of modeling elements within our previously proposed mechanical model for APS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.