Abstract
Soot aerosol formation in the ambient atmosphere, due to inappropriate and incomplete incineration of various fossil fuels or waste materials, has been considered as one of the major anthropogenic contributions to the global warming. However, despite of their adverse environmental impact, the soot nanoparticles are extremely useful in many practical applications if deposited as coatings, since they impart superhydrophobicity of the hosting solid substrate. Here, we unveil novel experimental results on the optical transmittance of superhydrophobic soot coatings with three different physicochemical profiles, synthesized by controlling the atmospheric air flow rate during the combustion of rapeseed oil. The in-depth morphological, chemical and optical analyses using scanning electron microscopy, X-ray photoelectron spectroscopy and spectrophotometry, show relation among the thickness, chemical bonds, morphology and light transmission coefficient (T %) of the soot. In turn, at equal film thicknesses, the gradual decrease of π bonds in the material leads to enhanced light transmittance in the NIR range, while the soot morphology regulates the width of the spectral region with T >0 %. Our findings demonstrate interconnection between the combustion conditions and the derivative physicochemical properties of the soot coatings, allowing single-step adjustment of their optical behavior, possibly for future underwater optical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.