Abstract

In this paper, an adjustable model-based image fusion method for multispectral (MS) and panchromatic (PAN) images is developed. The relationships of the desired high spatial resolution (HR) MS images to the observed low-spatial-resolution MS images and HR PAN image are formulated with image observation models. The maximum a posteriori framework is employed to describe the inverse problem of image fusion. By choosing particular probability density functions, the fused HR MS images are solved using a gradient descent algorithm. In particular, two functions are defined to adaptively determine most regularization parameters using the partially fused results at each iteration, retaining one parameter to adjust the tradeoff between the enhancement of spatial information and the maintenance of spectral information. The proposed method has been tested using QuickBird and IKONOS images and compared to several known fusion methods using quantitative evaluation indices. The experimental results verify the efficacy of this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.