Abstract
We describe the first automatic approach for merging coreference annotations obtained from multiple annotators into a single gold standard. This merging is subject to certain linguistic hard constraints and optimisation criteria that prefer solutions with minimal divergence from annotators. The representation involves an equivalence relation over a large number of elements. We use Answer Set Programming to describe two representations of the problem and four objective functions suitable for different data-sets. We provide two structurally different real-world benchmark data-sets based on the METU-Sabanci Turkish Treebank and we report our experiences in using the Gringo, Clasp and Wasp tools for computing optimal adjudication results on these data-sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Theoretical Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.