Abstract
Long Valley Caldera is a depression located in eastern California, which is the Earth’s largest caldera. Geological structures beneath Long Valley Caldera are mapped by the novel adjoint-state traveltime tomography method. Adjoint-state traveltime tomography is an Eikonal equation-based seismic imaging method. It is computationally efficient as compared to wave equation-based adjoint tomography methods. Furthermore, the method avoids ray tracing in non-homogeneous media, which may fail using conventional ray tracing techniques. The data used in the method include P- and S-wave arrival times gathered from Northern California Earthquake Data Center (NCEDC). P-wave traveltimes are directly obtained from NCEDC, while high-quality S-wave arrivals are carefully picked on raw seismograms based on waveform similarity. With the abundant seismic traveltime data and adjoint-state traveltime tomography method, we can generate high-resolution P- and S-wave velocity models for the region of Long Valley Caldera. The relationship between velocity heterogeneity and seismic and magmatic activities will be investigated.   
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.