Abstract

An adjoint-based variational optimal mixed model (VOMM) is proposed for subgrid-scale (SGS) closure in large-eddy simulation (LES) of turbulence. The stabilized adjoint LES equations are formulated by introducing a minimal regularization to address the numerical instabilities of the long-term gradient evaluations in chaotic turbulent flows. The VOMM model parameters are optimized by minimizing the discrepancy of energy dissipation spectra between LES calculations and a priori knowledge of direct numerical simulation using the gradient-based optimization. The a posteriori performance of the VOMM model is comprehensively examined in LES of three turbulent flows, including the forced homogeneous isotropic turbulence, decaying homogenous isotropic turbulence, and temporally evolving turbulent mixing layer. The VOMM model outperforms the dynamic Smagorinsky model, dynamic mixed model (DMM), and approximate deconvolution model in predictions of various turbulence statistics, including the velocity spectrum, structure functions, statistics of velocity increments and vorticity, temporal evolutions of the turbulent kinetic energy, dissipation rate, momentum thickness and Reynolds stress, as well as the instantaneous vortex structures at different grid resolutions and times. In addition, the VOMM model only takes up 30% time of the DMM model for all flow scenarios. These results demonstrate that the proposed VOMM model improves the numerical stability of LES and has high a posteriori accuracy and computational efficiency by incorporating the a priori information of turbulence statistics, highlighting that the VOMM model has a great potential to develop advanced SGS models in the LES of turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.