Abstract

Abstract The initial state sensitivity of high-impact extratropical cyclones over the North Atlantic and United Kingdom is investigated using an adjoint modeling system that includes moist processes. The adjoint analysis indicates that the 48-h forecast of precipitation and high winds associated with the extratropical cyclone “Desmond” was highly sensitive to mesoscale regions of moisture at the initial time. Mesoscale moisture and potential vorticity structures along the poleward edge of an atmospheric river at the initialization time had a large impact on the development of Desmond as demonstrated with precipitation, kinetic energy, and potential vorticity response functions. Adjoint-based optimal perturbations introduced into the initial state exhibit rapidly growing amplitudes through moist energetic processes over the 48-h forecast. The sensitivity manifests as an upshear-tilted structure positioned along the cold and warm fronts. Perturbations introduced into the nonlinear and tangent linear models quickly expand vertically and interact with potential vorticity anomalies in the mid- and upper levels. Analysis of adjoint sensitivity results for the winter 2013/14 show that the moisture sensitivity magnitude at the initial time is well correlated with the kinetic energy error at the 36-h forecast time, which supports the physical significance and importance of the mesoscale regions of high moisture sensitivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.