Abstract

Extracting photons efficiently from quantum sources, such as atoms, molecules, and quantum dots, is crucial for various nanophotonic systems used in quantum communication, sensing, and computation. To improve the performance of these systems, it is not only necessary to provide an environment that maximizes the number of optical modes, but it is also desirable to guide the extracted light toward specific directions. One way to achieve this goal is to use a large area metasurface that can steer the beam. Previous work has used small aperture devices that are fundamentally limited in their ability to achieve high directivity. This work proposes an adjoint-based topology optimization approach to design a large light extractor that can enhance the spontaneous decay rate of the embedded quantum transition and collimate the extracted photons. With the help of this approach, we present all-dielectric metasurfaces for a quantum transition emitting at λ = 600 nm. These metasurfaces achieve a broadband improvement of spontaneous emission compared to that in the vacuum, reaching a 10× enhancement at the design frequency. Furthermore, they can beam the extracted light into a narrow cone (±10°) along a desired direction that is predefined through their respective design process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call