Abstract
In this paper we show that a result of Gross and Kuelbs, used to study Gaussian measures on Banach spaces, makes it possible to construct an adjoint for operators on separable Banach spaces. This result is used to extend well-known theorems of von Neumann and Lax. We also partially solve an open problem on the existence of a Markushevich basis with unit norm and prove that all closed densely defined linear operators on a separable Banach space can be approximated by bounded operators. This last result extends a theorem of Kaufman for Hilbert spaces and allows us to define a new metric for closed densely defined linear operators on Banach spaces. As an application, we obtain a generalization of the Yosida approximator for semigroups of operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.